BARTON-BANDIS CRITERION
Synopsis
The Barton-Bandis criterion is a series of rock-joint behaviour routines which, briefly stated, allow the shear strength and normal stiffness of rock joints to be estimated, graphed, and numerically modelled for instance in the computer code UDEC-BB. Coupled behaviour, with deformation and changes in conductivity are also included. A key aspect of the criterion is the quantitative characterization of the joint, joints, or joint sets in question, in order to provide three simple items of input data. These concern the joint-surface roughness (JRC: joint roughness coefficient), the joint-wall compressive strength (JCS: joint compressive strength), and an empirically-derived estimate of the residual friction angle (φr). These three parameters have typical ranges of values from: JRC = 0 to 20 (smooth-planar to very rough-undulating), JCS = 10 to 200 MPa (weak-weathered to strong, unweathered) and φr =20° to 35° (strongly-weathered to fresh-unweathered). Each of these parameters can be obtained from simple, inexpensive index tests, or can be estimated by those with experience.
The three parameters JRC, JCS and φr form the basis of the non-linear peak shear-strength equation of Barton, 1973 and Barton & Choubey, 1977. This is a curved shear strength envelope without cohesion (c). It will be contrasted to the linear Mohr-Coulomb ‘c and φ’ (with apparent cohesion) criterion later. To be strictly correct the original Barton equation utilised the basic friction angle φb of flat, unweathered rock surfaces (in 1973), while φr  was substituted for φb following 130 direct shear tests on fresh and partly weathered rock joints (in 1977).
As well as peak and residual shear strength envelopes for laboratory-scale joint samples, Barton’s cooperation with Bandis (from 1978) resulted in corrections (reductions) of JRC and JCS to allow for the scale effect and reduced strength as rock-block size is increased. The laboratory-scale parameters, written as JRC0 and JCS0 for laboratory-size samples of length L0 (typically 50mm to 250mm), are written as JRCn and JCSn for in situ rock block lengths of Ln (typically 250mm to 2500mm, or even larger in massive rock). 
Bandis is also responsible for utilizing JRC and JCS in empirical equations to describe normal closure and normal stiffness. Normal stiffness (Kn) has units of MPa/mm, and might range from 20 to 200 MPa/mm. The Barton-Bandis (B-B) criterion includes the related modelling of physical joint aperture E (typically varying from 1mm down to 50μm, or 0.05mm) as a result of the normal loading (or unloading). B-B also includes the theoretically equivalent smooth-wall hydraulic aperture e, (typically 1mm down to 5μm, or 0.005mm). Usually E > e, and the two are empirically inter-related, using the small-scale joint roughness JRC0.
Finally the stiffness in the direction of shearing has also to be addressed. It is called peak shear stiffness (Ks). It has typical values of 0.1 MPa to 10 MPa/mm, i.e. 1/10th to 1/100th of normal stiffness. The concept of mobilized roughness (JRCmobilized) developed by Barton, 1982, allows both the peak shear-stiffness and the peak dilation angle (the effective aperture increase with shearing) to be calculated. The full suite of Barton-Bandis joint behaviour figures includes shear stress-displacement-dilation, stress-closure, and the change of estimated conductivity in each case. Examples of these will be given, following diagrams illustrating joint index testing.
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Figure 1 Top: Four columns of diagrams showing 1. direct shear tests principles (Note: apply shear force T ‘in-line’ to avoid creating a moment), 2. tilt test principles for measuring JRC0 with drill-core or jointed-block samples, 3. Schmidt hammer test principles for measuring JCS, and 4. roughness recording with profile gauge, and a/L (amplitude/length) method for estimating JRCn at larger scale. Bottom: Example roughness profiles and the ten samples with JRC ranges, tilt tests for JRC and φb.
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Figure 2 Left: Three shear strength criteria compared: 1. Linear Mohr-Coulomb (with an assumed cohesion intercept c), 2. Bi-linear Patton (φ+i) and 3. Continuously curved Barton formula, termed Barton-Bandis when scale-effects are included. Right: The peak shear strengths of 130 joint samples, and examples of the maximum, mean and minimum strength envelopes, with JRC, JCS and φr input.
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Figure 3 One example of the scale-effect studies by Bandis, 1980 using replica castings of rock joints, which were direct shear-tested at different scale. (Effect on JRC greatest for the roughest joints).
  


	[image: C:\Users\Dr. Nick Barton\Desktop\Desktop\Desktop\PAPERS, Q and TBM and SEISMIC files\SEISMIC BOOK 2006 all chapters with all figures\SEISMIC BOOK FIGURES Ch 1 to 16\Chapt 16\16.52.jpg]
	
JRCn ≈ JRCo [ Ln/Lo ] -0.02 JRCo
Down-scaling  of JRC to allow for                     increased block size.

	[image: C:\Users\Dr. Nick Barton\Desktop\Desktop\Desktop\PAPERS, Q and TBM and SEISMIC files\SEISMIC BOOK 2006 all chapters with all figures\SEISMIC BOOK FIGURES Ch 1 to 16\Chapt 16\16.52.jpg]
	
JCSn  ≈ JCSo  [ Ln/Lo ] -0.03 JRCo
Down-scaling  of JCS to allow for                     increased block size.
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Figure 4 Formal allowance for the scale-effect on JRC and JCS which depends on the block length Ln (in practice the mean spacing of a crossing set of rock joints). Roughness profiles measured on 1,300mm long diagonally-jointed 1m3 blocks, with tilt angles (α) and measured JRCn values. (Bakhtar and Barton, 1984).
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Figure 4 The JRCmobilized concept illustrated in the upper diagram allows shear-strength-displacement (and accompanying dilation and conductivity changes) to be modelled. This coupled behavior is modelled in the distinct element (jointed-media) code UDEC-BB.
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Figure 5 Shear-displacement-dilation behaviour, for three different block sizes. Barton, 1982. Note the inset showing the scaling assumptions from the Bandis et al. 1981 equations given in Figure 3. Note increase in δpeak as block size increases. Since there is also a reduction in peak shear strength, the peak shear stiffness Ks suffers a double scale-effect as block-size increases.
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Figure 6 Examples of ‘coupled’ shear-dilation-conductivity modelling with the Barton-Bandis modelling assumptions. When block-size variations are involved (left) the delayed dilation and therefore delayed conductivity change can be noted. These curves were produced in 1983 by Bakhtar using a programmable HP calculator and the BB equations by now assembled in Barton, 1982. ONWI and AECL funded work were responsible for the ‘finalization’ of the BB model prior to its programming (by Mark Christianson of Itasca) into the distinct element code UDEC-BB. Barton and Bakhtar, 1983, 1987.
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[bookmark: _GoBack]Figure 7 The non-linear modelling of joint closure by Bandis, 1980 and Bandis et al., 1983. The three load-unload cycles are designed to mirror the experimental evidence of a large hysteresis on the first cycle due to the unavoidable effects of taking a (drill-core) sample which releases the original in situ normal stress. The first load cycle re-closes the joint. The properly consolidated (cycle 3) behaviour is incorporated in the distinct-element (jointed) code UDEC-BB.
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Shear box and index testing of rock joints
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TYPICAL ROUGHNESS PROFILES for JRC range:
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